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Renormalized expression for the turbulent energy dissipation rate
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Conditional elimination of degrees of freedom is shown to lead to an exact expression for the rate of
turbulent energy dissipation in terms of a renormalized viscosity and a correction. The correction is neglected
on the basis of a previous hypothesis@W. D. McComb and C. Johnston, J. Phys. A33, L15 ~2000!# that there
is a range of parameters for which a quasistochastic estimate is a good approximation to the exact conditional
average. This hypothesis was tested by a perturbative calculation to second order in the local Reynolds number,
and the Kolmogorov prefactor~taken as a measure of the renormalized dissipation rate! was found to reach a
fixed point which was insensitive to initial values of the kinematic viscosity and to values of the spatial
rescaling factorh in the range 0.4<h<0.8.
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In the numerical simulation of fluid turbulence, as in oth
areas of computational physics, there is a practical requ
ment to reduce the number of degrees of freedom explic
simulated. However, turbulence has the noteworthy requ
ment that any such reduction must maintain the rate at wh
energy is dissipated. In this Rapid Communication we
forward a method of renormalizing the energy dissipat
rate.

It seems to be widely understood that any attempt to
duce the number of degrees of freedom in the theoret
description of fluid turbulence requires some form of con
tional average, in which the retained modes are kept una
aged@1#. Yet this requirement has not been recognized
most attempts to apply the dynamical renormalization gro
~RG! algorithm to turbulence. Normally such methods re
instead on a band-filtered unconditional average. A criti
appraisal of some of the leading approaches in this area
be found in the paper by Eyink@2#.

Originally, our own work, although introducing some fe
tures of the conditional average, also relied on the use of
band-filtered unconditional average@3#. Later it was recog-
nized that a conditional average in turbulence can only
carried out as an approximation, and the two-field decom
sition was introduced to separate out random and determ
istic effects @4,5#. Recently, we have redefined the cond
tional average in the form of a limit, eliminating the need
separate into two fields@6#.

The development reported here is that one of the cor
tions ~to mode elimination! in the momentum equation, van
ishes identically in the energy equation~and hence does no
contribute to energy transfer!, while a second correction con
tributes to the energy spectrum but vanishes identically in
equation for the dissipation rate.

We consider homogeneous, isotropic, incompressible,
tionary turbulence, with dissipation rate« given by

«5E
0

`

dk2n0k2E~k!.E
0

k0
dk2n0k2E~k!, ~1!
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where the approximate equality defines the maximum w
number k0. The value ofk0 is of the same order as th
Kolmogorov dissipation wave numberkd

(0)5(«/n0
3)1/4,

wheren0 is the kinematic viscosity.
In such turbulence the pair-correlation takes t

form ^ua(k,t)ub(k8,s)&5Dab(k)Q(k;t,s)d(k1k8), where
Dab(k)5dab2kakb /k2, and the energy spectrum is relate
to the spectral density byE(k,t)54pk2Q(k;t,t). To com-
plete the specification of our problem, we assume that ene
is being injected into some low range of wave numbers b
source termW(k), which satisfies

E
0

k

dkW~k!5«, ~2!

for somek!kd
(0) . This ensures stationarity.

Next we introduce a version of the RG which leads to
renormalized dissipation rate equation. The Navier-Sto
equation~NSE! may be written in dimensionless form as

$] t̂1 n̂0~ k̂!k̂2%ûa~ k̂, t̂ !5R0~k0!Mabg~ k̂!

3E d3 ĵ ûb~ ĵ , t̂ !ûg~ k̂2 ĵ , t̂ !, ~3!

on 0, k̂, k̂051, where k̂5k/k0 , t̂5t/t(k0), ûa( k̂,t)
5ua(k,t)/V(k0), t(k0) is, as yet, an undefined timescal
V(k0) is the rms value of a velocity mode withuku5k0,
defined for anyk by

V2~k!5 ~1/k3! ^ua~k,t !ua~2k,t !&, ~4!

R0(k0)5t(k0)V(k0)k0
4 is the local Reynolds number~see

Batchelor @7#, p. 107! and Mabg(k)5(2i )21@kbDag(k)
1kgDab(k)#. It should also be noted that the local Reynol
number is indeed nondimensional, sinceua(k,t) has dimen-
sions L4T21. The dynamical RG algorithm can now b
stated as follows:

~i! ~Rescale all wave vectors onk̂1 (5hk̂0), where 0
,h,1, for examplek85 k̂/ k̂1, such that 0,k8,h21, and
then average out the effects of the high wave number mo
to obtain a dynamical equation for the modes on the inter
©2000 The American Physical Society04-1
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0,k8,k18 ([1). ~ii ! Use this low-wave number NSE t
obtain the low-wave-number energy balance equation.~iii !
Integrate the energy balance equation with respect tok8 up to
the valuek85k18([1) to derive an equation for the dissip
tion rate. ~iv! Repeat these steps until the dissipation r
reaches a fixed point, at a new maximum wavenumberkN8
5hNk08 . The first step is to write the velocity fields as

ûa
6~ k̂, t̂ !5V~k1!ca

6~k8,t8!, ~5!

whereca
2(k8,t8) is defined on 0,k8,1 andca

1(k8,t8) is
defined on 1,k8,h21. The combined~low-k and high-k)
equation of motion then takes the form

$] t81n08~k8!k82%ca
6~k8,t8!

5R1~k1!Mabg
6 ~k8!E d3 j 8cb~ j8,t8!cg~k82 j8,t8!, ~6!

whereR1(k1)5t(k1)V(k1)k1
4. Next we average out the ef

fect of the high-k modes, while leaving the low-k modes
unaffected. In general this will require the conditional pr
jection of some functionalF@ca# on theca

2 , which we de-
note by a subscript ‘‘c, ’’ viz. ^•&c . This should not be con
fused with the usual ensemble average, as denoted by^•&.
An important property of the conditional average is that
constraint is lifted by a furtherunconditionalaverage@8#.

Taking the low-k equation, as given by Eq.~6!, we con-
ditionally average both sides, and decompose the right-h
side according to Eq.~5!, to obtain

$] t81n08~k8!k82%ca
2~k8!

5R1~k1!Mabg
2 ~k8!E d3 j 8$^cb

2~ j8!cg
2~k82 j8!&c

12^cb
2~ j8!cg

1~k82 j8!&c1^cb
1~ j8!cg

1~k82 j8!&c%.
~7!

We shall see presently that only the last term on the rig
hand side~RHS! of Eq. ~7! contributes to the energy diss
pation rate. In@6# we gave a method for the approxima
calculation of this conditional average. We shall refer to t
approximation as thequasistochastic estimate~QSE! of the
conditional average and denote it by^•&QSE. Then, rearrang-
ing Eq. ~7! and adding and subtracting quantities to leave
unaffected, we may write the low-wave-number equation

~] t81n08~k8!k82!ca
2~k8!

2R1~k1!Mabg
2 ~k8!E d3 j 8^cb

1~ j8!cg
1~k82 j8!&QSE

5R1~k1!Mabg
2 ~k8!E d3 j 8cb

2~ j8!cg
2~k82 j8!

1Sa
2~k8uk18!, ~8!
01530
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~9!

We now wish to obtain the QSE,̂ cb
1( j8,t8)cg

1(k8
2 j8,t8)&QSE, which appears on the LHS of Eq.~8!. Follow-
ing the procedure in@6#, we form an equation of motion fo
this quantity from Eq.~6!. This is solved perturbatively as
power series inR(k1) and the band-filtered moments of th
c1. As a result, the low-k equation, after eliminating the
first band of modes, takes the form

$] t81n08~k8!k82%ca
2~k8!2E ds8Aab~k8,t82s8!cb

2~k8,s8!

5R1~k1!Mabg
2 ~k8!E d3 j 8^cb

2~ j8!cg
2~k82 j8!&c

1Sa
2~k8uk18!, ~10!

where

Aab~k8,t82s8!5Dab~k8!R1
2~k1!@A(0)~k8,t82s8!

1A(1)~k8,t82s8!R1~k1!1A(2)

3~k8,t82s8!R1
2~k1!1•••#. ~11!

The coefficientsA(0),A(1),A(2), . . . depend on the moment
of c1 of order 2,3,4, . . . respectively. It should also be
noted that the even-order coefficients are real and the o
order are imaginary, since the expansion is effectively
powers ofMabg(k), which is imaginary.

We now form the energy balance equation for the expl
scalesk<k1, by multiplying each side of Eq.~10! through
by ca

2(2k8,t8) and averaging unconditionally. We the
multiply through by appropriate factors to restore the ori
nal unscaled variables, in the process introducing the ene
spectrumE(k). We also addW(k), as specified in Eq.~2!,
with the result

~] t12n0~k!k2!E~k!12E dsA~k,t2s!E~k,s!

5W~k!1T~k!18pk2V2~k1!^Sa
2~kuk1!ca

2~2k!&, ~12!

where A(k)5trAab(k) and T(k,t)5*d jT̃(k, j ,uk2 ju;t) is
the usual transfer spectrum, with wave numbers in the in
val 0<k, j , uk2 ju<k1.
4-2
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Lastly, we may form an equation for the rate at whi
energy is transferred through the modes of the system. I
grating Eq.~12! with respect tok, we obtain

2E
0

k1
dk@n0k21A~k!#E~k!

5«18pE
0

k1
dkk2V2~k1!^Sa

2~kuk1!ca
2~2k!&. ~13!

Note that the integral over the transfer term vanishes ide
cally due to the antisymmetry ofT̃(k, j ,uk2 ju;t) under inter-
change ofk and j ~see@7#, p. 85!.

At this stage, all three renormalized conservation eq
tions ~for momentum, energy, and dissipation rate! are exact.
Now consider the effect of the termSa

2 , divided into three
parts, as shown in Eq.~9!, and begin with the energy equa
tion. The conditional average behaves as a stochastic
able under a furtherunconditionalaverage@8#. Thus for the
first term we have~schematically!

^S1ca
2&;E d3 j 8$^^cb

2~ j8!cg
2~k82 j8!&cca

2~2k8!&

2^cb
2~ j8!cg

2~k82 j8!ca
2~2k8!&%50, ~14!

and so the contribution fromS1 vanishes identically in the
energy equation.

Now we turn to the dissipation equation: evidently, w
need only considerS2 andS3. The first of these gives

E d3k8^S2ca
2&

;E d3k8E d3 j 8^cb
2~ j8!cg

1~k82 j8!ca
2~2k8!&50,

~15!

by antisymmetry under interchange ofk8 andj8. It should be
noted that this property holds only because both wave n
bers are on the same interval. This is not the case regar
the contribution fromS3, which is

E d3k8^S3ca
2&

;E d3k8E d3 j 8$^cb
1~ j8!cg

1~k82 j8!ca
2~2k8!&

2^cb
1~ j8!cg

1~k82 j8!ca
2~2k8!&QSE%. ~16!

However, note that the two terms will cancel under any c
cumstances in which the QSE is a good model for the ex
conditional average.

Now, in order to perform an RG-style iteration, we tru
cate the expansion forAab , as given by Eq.~11!, at lowest
order and rename

R1
2~k1!A(0)~k8,0!5dn0~k8!k82. ~17!
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Note thatA(1) is imaginary and therefore cannot contribu
to the dissipation rate. This means that we effectively neg
terms of orderR1

4(k1) and higher. To this level of approxi
mation, Eq.~10! can be written as

~] t81n18~k8!k82!ca
2~k8!5Sa

2~k8uk18!1R1~k1!Mabg
2 ~k8!

3E d3 j 8cb
2~ j8!cg

2~k82 j8!,

~18!

for 0,k8,1. The renormalized viscosity is given by

n18~k8!5n08~k8!1dn08~k8!, ~19!

and the equation for the increment is

dn08~k8!5R1
2~k1! lim

l 8→h21

D0~k8!F ~k82/2!1 j 822k8 j 8m

j 822k8 j 8m
G

1O@R1
4~k1!#, ~20!

wherem is the cosine of the angle betweenk8 and j8 and
D0(k8) is the two-field form of the increment@5#, given by

D0~k8!5
1

k82E d3 j 8
L~k8,j8!Q̂1~ l 8!

n08~ j 8! j 821n08~ l 8!l 82
. ~21!

Here l 85uk82 j8u, 1,k8, l 8,h21 and L(k8, j8)5
22M dbg

2 (k8)Mbde
1 ( j8)Deg

1 (k82 j8). Equation~20! for the in-
crement to the viscosity involves limuk82 j8u→h21 ~see@6#!,
and if this limit is evaluated by taking theQ̂1(uk82 j8u) as an
expansion in Taylor series aboutk851, then we make con-
tact with the two-field version of McComb and Watt@5#,
with spectral density given by

Q̂~ l 8!5
1

k1V2~k1!
H h11/32

11

3
h14/3~ l 82h21!J . ~22!

It should be noted, however, that the factor in squ
brackets in Eq.~20! is new. This arises because we were a
to improve on the Markovian approximation used in the e
lier calculations of McCombet al. @3,5#. Details of this
analysis will be given elsewhere. The equations for any
eration labeledn can be found by induction, and numeric
calculation shows that the renormalized viscosity approac
a fixed point for somen5N, where in practiceN55 or 6,
for most values of the spatial rescaling factor. At the fix
point, Eq.~13! may be rearranged to give

«52E
0

kN
dknN~k!k2E~k!28pE

kN21

kN
dkk2V2~kN!

3^S3ca
2~2k!&, ~23!

where^S3ca
2(2k)& is shown schematically in Eq.~16!.

Let us now consider how to assess this work. We begin
noting that the renormalized ‘‘viscous term’’ in Eq.~18! is
not an observable, even though it may be calculated to
4-3
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order using Eq.~11!. This is becauseSa
2 varies from realiza-

tion to realization of the explicit scales. In contrast, t
renormalized viscosity in Eq.~12! would be@if we took the
step given in Eq.~17!# an observable, as all terms in th
equation have been averaged. However, the contribu
from S2 is likely to prove important for energy transfer an
as this has been omitted from our calculation, we shall le
discussion of this to a fuller account, and concentrate on
~23! for the dissipation rate, as we know thatS2 does not
contribute to this equation.

In order to calculate the renormalized dissipation rate,
assume a power-law form for the spectrumE(k)5a« rks.
Then, the requirement that the renormalized viscosity~19!
and its increment~20! scale in the same way, along with th
conservation requirement of Eq.~23!, yield r 52/3 ands5
25/3, along with an expression for the Kolmogorov prefa
tor a @see Eq.~92! in Ref. @5##.

The theoretical prediction ofa can be taken as a measu
of the predicted dissipation rate, and in Fig. 1 we show
result of such calculations, witha iterating to a fixed point
for several different starting conditions at one value of
spatial rescaling factor. The fixed point corresponds to
upper end of the inertial range and the value ofa at the fixed
point agrees well with the result obtained from numeri
simulations. Figure 2 shows the fixed-point value ofa for a
range of spatial rescaling factors. It is of interest to note t
the dashed-dotted curve to the left depicts an earlier ver

FIG. 1. Kolmogorov prefactora reaching a fixed point for a

variety of starting viscositiesñ0. ~For the case where the spati
rescaling factorh50.60 or the bandwidthh50.40.!
s
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of the theory, in which the conditional average was appro
mated by a band-filtered average@3#. The dashed line show
the result of working out the limiting form of the viscosit
~the stochastic part! with scale separation@5#, while invoking
a Markovian approximation. The solid line shows the effe
of including the square brackets in Eq.~20! and gives rise to
a prediction ofa51.6260.02 for 0.2,h,0.6, where the
bandwidth h512h. Incidentally, it is perhaps worth re
marking that the limith→0 ~which one would expect in the
microscopic case! does not exist for macroscopic turbulenc
This is a consequence of an exact symmetry of the N
local energy transfer vanishes when the wave vector t
takes the form of an equilateral triangle.

Last, there is the question, How good is our perturbat
calculation? The expansion, which we truncate, is in pow
of l5Rn

2(k), with integrals over moments of thec1 ~where
uc1u rms<1). With the maximum valuel50.16, this is a
small parameter, but possibly not small enough for the tr
cation to qualify as a rational approximation@9#. Accord-
ingly, we may have to rely on the properties of the mome
expansion. Certainly, the next step is to work out the m
nitude of the fourth-order term. This is the subject of curre
work.
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FIG. 2. Variation of the Kolmogorov prefactora with band-
width h or spatial rescaling factorh.
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