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Renormalized expression for the turbulent energy dissipation rate
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Conditional elimination of degrees of freedom is shown to lead to an exact expression for the rate of
turbulent energy dissipation in terms of a renormalized viscosity and a correction. The correction is neglected
on the basis of a previous hypothepi¥. D. McComb and C. Johnston, J. Phys38, L15 (2000 ] that there
is a range of parameters for which a quasistochastic estimate is a good approximation to the exact conditional
average. This hypothesis was tested by a perturbative calculation to second order in the local Reynolds number,
and the Kolmogorov prefactdtaken as a measure of the renormalized dissipation vae found to reach a
fixed point which was insensitive to initial values of the kinematic viscosity and to values of the spatial
rescaling factoh in the range 0.4h=<0.8.
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In the numerical simulation of fluid turbulence, as in otherwhere the approximate equality defines the maximum wave
areas of computational physics, there is a practical requireaumberk,. The value ofk, is of the same order as the
ment to reduce the number of degrees of freedom explicitljKolmogorov dissipation wave numbek{®=(e/v3)"4,
simulated. However, turbulence has the noteworthy requirewhere v, is the kinematic viscosity.
ment that any such reduction must maintain the rate at which |n such turbulence the pair-correlation takes the
energy is dissipated. In this Rapid Communication we puform <ua(k,t)uﬁ(k’,s))=Daﬁ(k)Q(k;t,s) S(k+K'), where
forward a method of renormalizing the energy dissipationDaﬁ(k):5aﬁ_kakﬁ/k2, and the energy spectrum is related
rate. to the spectral density b (k,t)=47k?Q(k;t,t). To com-

It seems to be widely understood that any attempt to replete the specification of our problem, we assume that energy

duce the number of degrees of freedom in the theoreticgk being injected into some low range of wave numbers by a
description of fluid turbulence requires some form of condi-source termW(k), which satisfies

tional average, in which the retained modes are kept unaver-

aged[1]. Yet this requirement has not been recognized in K

most attempts to apply the dynamical renormalization group fo dkWk)=e, @
(RG) algorithm to turbulence. Normally such methods rely

instead on a band-filtered unconditional average. A Criticator somex << kgo) This ensures Stationarity_

appraisal of some of the leading approaches in this area will Next we introduce a version of the RG which leads to a
be found in the paper by Eyinl]. renormalized dissipation rate equation. The Navier-Stokes

Originally, our own work, although introducing some fea- equation(NSE) may be written in dimensionless form as
tures of the conditional average, also relied on the use of the

band-filtered unconditional averag@]. Later it was recog- {&;+;0(R)R2}ﬁa(ﬁ,f)=Ro(ko)Maﬁy(R)
nized that a conditional average in turbulence can only be
carried out as an approximation, and the two-field decompo-
sition was introduced to separate out random and determin-
istic effects[4,5]. Recently, we have redefined the condi- o A A o
tional average in the form of a limit, eliminating the need toon 0<k<ky=1, where k=k/ky, t=t/7(ky), u,(k,t)
separate into two fieldgs]. =u,(k,t)/V(kg), (ko) is, as yet, an undefined timescale,
The development reported here is that one of the correcv(k,) is the rms value of a velocity mode wittk| =Ko,
tions (to mode eliminationin the momentum equation, van- defined for anyk by
ishes identically in the energy equatitand hence does not
contribute to energy transfemwhile a second correction con- V2(K) = (1/K%) (Ug(k,Dua(—k,t)), 4
tributes to the energy spectrum but vanishes identically in the 4.
equation for the dissipation rate. Ro(ko) = 7(ko)V(ko) Ky is the local Reyno_ldinumbe(see
We consider homogeneous, isotropic, incompressible, stéatchelor [7], p. 107 and M ,5,(K)=(2i) kgD 4,(K)
tionary turbulence, with dissipation rategiven by +k,Dag(K)]. It should also be noted that the local Reynolds
number is indeed nondimensional, sincgk,t) has dimen-

sions LT, The dynamical RG algorithm can now be

X f d*ug(, Huy(k=i,1), (3)

> K, .
o= f k2 ok2E(K) = f “dk2vk?E(k), (1) Stated as follows: A )

0 0 (i) (Rescale all wave vectors oky (=hkg), where 0
<h<1, for examplek’ =k/k;, such that &k’<h~?*, and
then average out the effects of the high wave number modes

*Email address: W.D.McComb@ed.ac.uk to obtain a dynamical equation for the modes on the interval
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0<k’<k; (=1). (ii) Use this low-wave number NSE to where
obtain the low-wave-number energy balance equatfdin.

Integrate the energy balance equation with respekt tg to S (K'|k7)
the valuek’ =k;(=1) to derive an equation for the dissipa-

tion rate. (iv) Repeat these steps until the dissipation rate =R, (k)M o5,(K')

reaches a fixed point, at a new maximum wavenunier

=hNkg . The first step is to write the velocity fields as X f g Gy (K =)= b5 G, (K =)
SN 5y
u;(kvt)zv(kl)l/iz(k,!t’)! (5) — . ’ o

+2(YE (Y (K =),

where ¢, (k’,t") is defined on 6ck’<1 andy (k',t") is 83

defined on Xk’<h~!. The combinedlow-k and highk) T I

equation of motion then takes the form +§¢ﬁ(’ iy (K =] )>C_f¢ﬁ(’ Yy (k=] )>QS€}'

S3
{00+ vh (KK 2= (K 1) ©

H H Y T
—R(KIME. (K’ f A3 wa(i’ b K—i't'), (6 We now wish to obtain the QSE{yg(j’,t")¢, (k
(k) apl ) R ZUNLIRLEY i, ©® —j",t"))ose, which appears on the LHS of E(B). Follow-
ing the procedure if6], we form an equation of motion for
whereR; (k) = 7(ky)V(k,)k]. Next we average out the ef- this quantity from Eq(6). This is solved perturbatively as a
fect of the highk modes, while leaving the low-modes power series ifR(k;) and the band-filtered moments of the
unaffected. In general this will require the conditional pro- ¢*. As a result, the lowk equation, after eliminating the
jection of some functionaf] ¢,] on they , which we de- first band of modes, takes the form
note by a subscript ¢,” viz. {-).. This should not be con-
fuse_d with the usual ensemble average, as deno_te(d Yy {at,+y(’,(k’)k’2}¢;(k’)—f ds'A.p(K',t"'=s") g (K',s")
An important property of the conditional average is that the
constraint is lifted by a furthemnconditionalaveragg 8]. “R(KIM (K’ fds-, ~ (i (K —i
Taking the lowk equation, as given by Eq6), we con- 1K) Mo, (K) 1010 (K =11
ditionally average both sides, and decompose the right-hand L
side according to E(5), to obtain +S, (Kky), (10

where

, ’ k' k/2 (k'
{0, +vo(k") }wa( ) Aa[g(k',t'—S’):Daﬁ(k’)Ri(kl)[A(O)(k’,t’_S’)

= Rl(kl)M;By(k,)f &* (i (I, (K =]"))e +AD(K' 1 =" )Ry (ky) + AP

X (k' t'=s"R3(k)+---1. (1D

=i oL it + i oL i
H2I U9y (K1t (G (045 (K =10k (77 The coefficientsA©® A, A®), . depend on the moments

of * of order 2,3,4... respectively. It should also be
We shall see presently that only the last term on the righthoted that the even-order coefficients are real and the odd-
hand side(RHS) of Eq. (7) contributes to the energy dissi- Order are imaginary, since the expansion is effectively in
pation rate. In[6] we gave a method for the approximate POWers ofMz,(k), which is imaginary. .
calculation of this conditional average. We shall refer to this  We now form the energy balance equation for the explicit
approximation as thguasistochastic estimat@SE of the ~ Scalesk=k,, by multiplying each side of Eq(10) through
conditional average and denote it ) ose. Then, rearrang- By ¥, (—k’,t") and averaging unconditionally. We then
ing Eq. (7) and adding and subtracting quantities to leave itmultiply through by appropriate factors to restore the origi-
unaffected, we may write the low-wave-number equation a$l@l unscaled variables, in the process introducing the energy

spectrumE(k). We also addVN(k), as specified in Eq2),

(0 +vo(K K2 g (K') with the result

2 —
Ry k)M (K [ @500 05 (K — e (2ol 0 +2 | asAki- 9o

=W(k)+T(k)+87k?VZ(k)(S, (klkp) ¢, (= k), (12)

— - ’ 31— (i1 (L ! ~
=Ra(kp)M 45, (K >f d°) g (i), (K" =) where A(k)=trA (k) and T(k,t)=fdjT(k.j,|k—j;t) is
U the usual transfer spectrum, with wave numbers in the inter-
+S, (k'[Kk}), ®)  val 0=<k,j, |k—j|=<ki.
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Lastly, we may form an equation for the rate at which Note thatA(*) is imaginary and therefore cannot contribute
energy is transferred through the modes of the system. Intee the dissipation rate. This means that we effectively neglect
grating Eqg.(12) with respect tk, we obtain terms of orderR‘l‘(kl) and higher. To this level of approxi-

mation, Eq.(10) can be written as

kl )
2_[0 dk[Vok +A(k)]E(k) (atr'f'V:,L(k,)k,z)lﬂ;(k,):S;(k,|k:/|_)+Rl(kl)M;ﬁy(k,)
< [ i pine, -,
(19

—e+8r [ RV (S (kUL (—k). (19

Note that the mtegr.al over thejranrsfer tgrm vanlsh.es |dent|];Or 0<k’<1. The renormalized viscosity is given by

cally due to the antisymmetry af(k,j,|k—j|;t) under inter-

change ok andj (see[7], p. 85. vi(K ) =vy(K)+ Svh(k'), (19
At this stage, all three renormalized conservation equa-

tions (for momentum, energy, and dissipation jadee exact. and the equation for the increment is

Now consider the effect of the ter®, , divided into three

parts, as shown in Eq9), and begin with the energy equa- (K212 +j"=K']

ovh(k')=Ri(ky) lim Ag(k’)

tion. The conditional average behaves as a stochastic vari- P iK'
able under a furtheanconditionalaveragg 8]. Thus for the o
first term we havedschematically +O[R}(ky)1, (20
N N L where u is the cosine of the angle betwe&h andj’ and
(S1¢,) Jd PP )4, (K =]))etha (—K)) Ao(K’) is the two-field form of the incremeii6], given by
—(Wp(INw, (K =iy, (k' N}=0, (14 sy L[ L(K,jHQ* (/") o1
0 =2 J A e o1 12"
and so the contribution fror, vanishes identically in the k'? vo(ij 2 +ve(/ ") /"2
energy equation.
e 1L Here /'=[k'—}|, 1<k’, /'<h™! and L(K',|’)=

Now we turn to the dissipation equation: evidently, we

need only conside§, andS;. The first of these gives —2M 5,8«/(k’)ME§e(j’)D:v(k,_j’)' Equation(20) for the in-

crement to the viscosity involves ljil —j’| —h~1 (see[6]),
&K’ _ and if this limit is evaluated by taking tH@* (|k’ —j’|) as an
(Savha) expansion in Taylor series abokit=1, then we make con-

tact with the two-field version of McComb and Waf],
, R S , with spectral density given by

~ [ e [ @i us e -inu -k =0,
A 1 11

(19 A1) = hll/3—€h14/3(|’—h71) (22
by antisymmetry under interchangeldfandj’. It should be
noted that this property holds only because both wave num- |+ should be noted, however, that the factor in square

bers are on t_he same inter\_/al. _This is not the case regardir&ackets in Eq(20) is new. This arises because we were able
the contribution fromsS;, which is to improve on the Markovian approximation used in the ear-
lier calculations of McCombet al. [3,5]. Details of this
f d3k’(Sz,) analysis will be given elsewhere. The equations for any it-
eration labelech can be found by induction, and numerical
calculation shows that the renormalized viscosity approaches
_ 37 Bir g/t i (el — it — ! a fixed point for somen=N, where in practicdN=5 or 6,
f Ik f ) {Wﬁ Uy (K =109 (K % for most values of the spatial rescaling factor. At the fixed
point, Eq.(13) may be rearranged to give
—(a (1) (K =) (=K' ))qs8 - (16)

Ky Kn
However, note that the two terms will cancel under any cir- SZZL deN(k)sz(k)_Bﬂ'f dkIeVZ(ky)
cumstances in which the QSE is a good model for the exact NTL
conditional average. X{(Ssip, (—K)), (23
Now, in order to perform an RG-style iteration, we trun-
cate the expansion fok,;, as given by Eq(11), at lowest  where(S;¢, (—Kk)) is shown schematically in Eq16).

order and rename Let us now consider how to assess this work. We begin by
5 O Lr s noting that the renormalized “viscous term” in E(L8) is
RI(k)A™)(K',0)= vg(k')k'“. (17 not an observable, even though it may be calculated to any
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FIG. 1. Kolmogorov prefactow reaching a fixed point for a FIG. 2. Variation of the Kolmogorov prefactat with band-

variety of starting viscosities,. (For the case where the spatial Width % or spatial rescaling factdr.

rescaling factoh=0.60 or the bandwidtiy=0.40) of the theory, in which the conditional average was approxi-

mated by a band-filtered averad. The dashed line shows

order using Eq(11). This is becaus8, varies from realiza- the result of working out the limiting form of the viscosity
tion to realization of the explicit scales. In contrast, the(the stochastic partvith scale separatiofb], while invoking
renormalized viscosity in Eq12) would be[if we took the  a Markovian approximation. The solid line shows the effect
step given in Eq.17)] an observable, as all terms in the of including the square brackets in E0) and gives rise to
equation have been averaged. However, the contributioa prediction ofa=1.62=0.02 for 0.2<%<0.6, where the
from S, is likely to prove important for energy transfer and, bandwidth »=1—h. Incidentally, it is perhaps worth re-
as this has been omitted from our calculation, we shall leavéarking that the limitp— 0 (which one would expect in the
discussion of this to a fuller account, and concentrate on Eqnicroscopic casedoes not exist for macroscopic turbulence.
(23) for the dissipation rate, as we know ﬂ'ﬁz does not his is a consequence Of an exact Symmetry of the NSE
contribute to this equation. local energy transfer var_ushes when the wave vector triad

In order to calculate the renormalized dissipation rate, wé@kes the form of an equilateral triangle. ,
assume a power-law form for the spectru(k)=as'ks. Last,_the?re is the question, How good is our perturbatlon
Then, the requirement that the renormalized Visco&ts) calculatlzon. The expansion, which we truncate,Js in powers
and its incremen(20) scale in the same way, along with the Ofi‘: Ra (k). W't_h integrals over moments of thi (yvh_ere
conservation requirement of E@3), yield r=2/3 ands= ¥ | ms=1). With the maximum value.=0.16, this is a

—5/3, along with an expression for the Kolmogorov prefac-smaII paramet_er, but poss_ibly not smaI_I en(_)ugh for the trun-
tor a,[see Eq(92) in Ref. [5]] cation to qualify as a rational approximati¢@]. Accord-

The theoretical prediction af can be taken as a measure ingly, we may have to rely on the properties of the moment

of the predicted dissipation rate, and in Fig. 1 we show thexpansion. Certainly, the next ste_p IS to work_ out the mag-
result of such calculations, with iterating to a fixed point nitude of the fourth-order term. This is the subject of current

for several different starting conditions at one value of thework'

spatial rescaling factor. The fixed point corresponds to the Both authors acknowledge the support and facilities pro-
upper end of the inertial range and the valuexait the fixed  vided by the Isaac Newton Institute. We also thank Professor
point agrees well with the result obtained from numericalM.E. Cates, G. Fullerton, A. Hunter, and A. Quinn for read-
simulations. Figure 2 shows the fixed-point valueaofor a  ing the manuscript and making numerous helpful comments.
range of spatial rescaling factors. It is of interest to note thaC.J. acknowledges the financial support of the Engineering
the dashed-dotted curve to the left depicts an earlier versioand Physical Sciences Research Council.
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